498 research outputs found

    Nitrogen-rich transition metal nitrides

    No full text
    The solid state chemistry leading to the synthesis and characterization of metal nitrides with N:M ratios >1 is summarized. Studies of these compounds represent an emerging area of research. Most transition metal nitrides have much lower nitrogen contents, and they often form with non- or sub-stoichiometric compositions. These materials are typically metallic with often superconducting properties, and they provide highly refractory, high hardness materials with many technological applications. The higher metal nitrides should achieve formal oxidation states (OS) attaining those found among corresponding oxides, and they are expected to have useful semiconducting properties. Only a very few examples of such high OS nitrogen-rich compounds are known at present. The main group elements typically form covalently bonded nitride ceramics such as Si3N4, Ge3N4 and Sn3N4, and the early transition metals Zr and Hf produce Zr3N4 and Hf3N4. However, the only main example of a highly nitrided transition metal compound known to date is Ta3N5 that has a formal oxidation state +5 and is a semiconductor with visible light absorption leading to applications as a pigment and in photocatalysis. New synthesis routes are being explored to study the possible formation of other N-rich materials that are predicted to exist by ab initio calculations. There is a useful interplay between theoretical predictions and experimental synthesis studies at ambient and high pressure conditions, as we explore and establish the existence and structure–property relations of these new nitride compounds and polymorphs. Here we review the state of current investigations and indicate possible new directions for further work

    High-pressure annealing of a prestructured nanocrystalline precursor to obtain tetragonal and orthorhombic polymorphs of Hf3N4

    No full text
    Transition metal nitrides containing metal ions in high oxidation states are a significant goal for the discovery of new families of semiconducting materials. Most metal nitride compounds prepared at high temperature and high pressure from the elements have metallic bonding. However amorphous or nanocrystalline compounds can be prepared via metal-organic chemistry routes giving rise to precursors with a high nitrogen:metal ratio. Using X-ray diffraction in parallel with high pressure laser heating in the diamond anvil cell this work highlights the possibility of retaining the composition and structure of a metastable nanocrystalline precursor under high pressure-temperature conditions. Specifically, a nanocrystalline Hf3N4 with a tetragonal defect-fluorite structure can be crystallized under high-P,T conditions. Increasing the pressure and temperature of crystallization leads to the formation of a fully recoverable orthorhombic (defect cottunite-structured) polymorph. This approach identifies a novel class of pathways to the synthesis of new crystalline nitrogen-rich transition metal nitrides

    Relationship between emergency presentation, systemic inflammatory response, and cancer-specific survival in patients undergoing potentially curative surgery for colon cancer

    Get PDF
    Background Emergency presentation is recognized to be associated with poorer cancer-specific survival following curative resection for colorectal cancer. The present study examined the hypothesis that an enhanced systemic inflammatory response, prior to surgery, might explain the impact of emergency presentation on survival. Methods In all, 188 patients undergoing potentially curative resection for colorectal cancer were studied. Of these, 55 (29%) presented as emergencies. The systemic inflammatory response was assessed using the Glasgow Prognostic Score (mGPS), which is the combination of an elevated C-reactive protein (>10 mg/L) and hypoalbuminemia (<35 g/L). Results In the emergency group, tumor stage was greater (P < 0.01), more patients received adjuvant therapy (P < 0.01) more patients had an elevated mGPS (P < 0.01), and more patients died of their disease (P < 0.05). The minimum follow-up was 12 months; the median follow-up of the survivors was 48 months. Emergency presentation was associated with poorer 3-year cancer-specific survival in those patients aged 65 to 74 years (P < 0.01), in both males and females (P < 0.05), in the deprived (P < 0.01), in patients with tumor-node-metastasis (TNM) stage II disease (P < 0.01), in those who received no adjuvant therapy (P < 0.01), and in the mGPS 0 and 1 groups (P < 0.05) groups. On multivariate survival analysis of patients undergoing potentially curative surgery for TNM stage II colon cancer, emergency presentation (P < 0.05) and mGPS (P < 0.05) were independently associated with cancer-specific survival. Conclusions These results suggest that emergency presentation and the presence of systemic inflammatory response prior to surgery are linked and account for poorer cancer-specific survival in patients undergoing potentially curative surgery for colon cancer. Both emergency presentation and an elevated mGPS should be taken into account when assessing the likely outcome of these patients

    Structural studies and polymorphism in amorphous solids and liquids at high pressure

    Get PDF
    When amorphous materials are compressed their structures are expected to change in response to densification. In some cases, the changes in amorphous structure can be discontinuous and they can even have the character of first-order phase transitions. This is a phenomenon referred to as polyamorphism. Most evidence for polyamorphic transitions between low and high density liquids or analogous transformations between amorphous forms of the same substance to date has been indirect and based on the changes in thermodynamic and other structure-related properties with pressure. Recent studies using advanced X-ray and neutron scattering methods combined with molecular dynamics simulations are now revealing the details of structural changes in polyamorphic systems as a function of pressure. Various "two state'' or "two species'' models are used to understand the anomalous densification behaviour of liquids with melting curve maxima or regions of negative melting slope. Thermodynamic analysis of the two state model leads to the possibility of low- to high-density liquid transitions caused by differences in bulk thermodynamic properties between different amorphous forms and on the degree of cooperativity between low- and high-density structural configurations. The potential occurrence of first-order transitions between supercooled liquids is identified as a critical-like phenomenon. In this tutorial review we discuss the background to polyamorphism, incorporating the experimental observations, simulation studies and the two-state models. We also describe work carried on several systems that are considered to be polyamorphic

    Pressure as a limiting factor for life

    Get PDF
    Facts concerning the stability and functioning of key biomolecular components suggest that cellular life should no longer be viable above a few thousand atmospheres (200–300 MPa). However, organisms are seen to survive in the laboratory to much higher pressures, extending into the GPa or even tens of GPa ranges. This is causing main questions to be posed concerning the survival mechanisms of simple to complex organisms. Understanding the ultimate pressure survival of organisms is critical for food sterilization and agricultural products conservation technologies. On Earth the deep biosphere is limited in its extent by geothermal gradients but if life forms exist in cooler habitats elsewhere then survival to greater depths must be considered. The extent of pressure resistance and survival appears to vary greatly with the timescale of the exposure. For example, shock experiments on nanosecond timescales reveal greatly enhanced survival rates extending to higher pressure. Some organisms could survive bolide impacts thus allowing successful transport between planetary bodies. We summarize some of the main questions raised by recent results and their implications for the survival of life under extreme compression conditions and its possible extent in the laboratory and throughout the universe

    Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure

    No full text
    There is interest in identifying novel materials for use in radioactive waste applications and studying their behavior under high pressure conditions. The mineral zirconolite (CaZrTi2O7) exists naturally in trace amounts in diamond-bearing deep-seated metamorphic/igneous environments, and it is also identified as a potential ceramic phase for radionuclide sequestration. However, it has been shown to undergo radiation-induced metamictization resulting in amorphous forms. In this study we probed the high pressure structural properties of this pyrochlore-like structure to study its phase transformations and possible amorphization behavior. Combined synchrotron X-ray diffraction and Raman spectroscopy studies reveal a series of high pressure phase transformations. Starting from the ambient pressure monoclinic structure, an intermediate phase with P21/m symmetry is produced above 15.6 GPa via a first order transformation resulting in a wide coexistence range. Upon compression to above 56 GPa a disordered metastable phase III with a cotunnite-related structure appears that is recoverable to ambient conditions. We examine the similarity between the zirconolite behavior and the structural evolution of analogous pyrochlore systems under pressure.<br/

    New functionalisation reactions of graphitic carbon nitrides: Computational and experimental studies

    Get PDF
    The functionalisation of two-dimensional materials is key to modify their properties and facilitate assembly into functional devices. Here, new reactions have been proposed to modify crystalline two-dimensional carbon nitrides of polytriazine imide structure. Both amine alkylation and aryl-nitrene-based reactions have been explored computationally and with exploratory synthetic trials. The approach illustrates that alkylation is unfavourable, particularly at basal-plane sites. In contrast, while initial trial reactions were inconclusive, the radical-addition of nitrenes is shown to be energetically favourable, with a preference for functionalising sheet edges to minimise steric effects

    Poly(diallylmethylammonium) proton conducting membranes with high ionic conductivity at intermediate temperatures

    Get PDF
    High temperature proton exchange membrane fuel cells are being lately investigated because of their high energy efficiency, their superior heat/water management, CO tolerance, and electrode reaction kinetics. To further advance this technology, the polymer membrane portfolio and performance should be improved for intermediate or high temperature operation (>100 °C). In this work we present new poly(diallylmethylammonium) proton conducting membranes with high ionic conductivity at 120 °C. First, new protic ionic liquids, hereafter called DAMAH+X−, were synthesized leading to diallylmethylammonium monomers with different counter-anions. By radical cyclopolymerization through thermal and photoinitiation mechanisms, self-standing protic polymeric membranes of poly(diallylmethylammonium X−) were obtained. Membranes showed good thermal stability (>250 °C) and mechanical properties without the need of additives such as (protic) ionic liquids, solvents or inorganic charges. Great attention was paid to understand the effect of the different counter-anions on the membrane properties. As a general trend, fluorinated anions coming from strong acids confer high ionic conductivity and allow to reduce the hygroscopic properties on the protic polymeric membranes. Proton structural and dynamical stability at different temperatures and humidification conditions were investigated by Neutron Scattering (QENS and NR). The optimized poly(diallylmethylammonium X−) shows similar ionic conductivity values than Nafion 212 under varying relative humidity conditions at 80 °C. Furthermore, it shows a high ionic conductivity value of 1.9 × 10−3 S cm−1 at 120 °C under dry conditions

    Synchrotron x-ray total scattering and modeling study of high-pressure-induced inhomogeneous atom reconfiguration in an equiatomic Zr50Cu50 metallic glassy alloy

    Get PDF
    We studied in situ the local atomic structure evolution of an equiatomic Zr50Cu50 metallic glassy alloy under high pressure compression inside a diamond anvil cell using synchrotron x-ray total scattering. The empirical potential structure refinement method was used to reconstruct the three-dimensional atomic models at each pressure step, and to analyze the spatially averaged local atomic structure configurations. The interatomic distances of different atomic pairs are reduced at different rates with increasing pressure and the Cu-Cu pairs exhibit the highest percentage reduction. Between ambient pressure and 36.85 GPa, the atomic separation of the Cu-Cu pairs is reduced by ∼12% compared to ∼5% for Zr-Zr and Zr-Cu pairs. Such disproportional decrease in interatomic distance results in inhomogeneous atom reconfiguration in the short atomic range. With the increase of pressure, the Zr atoms move preferentially towards the Zr-Zr pairs, while the Cu atoms move preferentially towards the Cu-Cu pairs, creating inhomogeneous atom reconfiguration with positive short-range order coefficients of 0.0309 and 0.0464 for Zr-Zr and Cu-Cu respectively, but a negative value of -0.0464 for Zr-Cu pairs. Voronoi tessellation method was also used to study the evolution of the short-range atom packing versus pressure, elucidating the cause for the bimodal distribution of the bond angle distributions. The research sheds light on understanding of the atomic reconfiguration of equiatomic alloys under high pressure
    • …
    corecore